
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

JULIA FOR HPC ON OLCF SYSTEMS

William F Godoy, Pedro Valero-Lara, Philip Fackler

Computer Science and Mathematics Division

Advanced Computing Systems Research Section

Prepared for: SEPTEMBER 2022 OLCF USER CONFERENCE CALL 09/27/2022

22

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

2

33

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

3

44

Landscape of computing: The Tower of Babel
• Scientific software:

o Performance languages: C, C++, Fortran
o High-level productivity languages: Python, Matlab, R

• Plethora of programming models for heterogeneous
computing . Standard, vendor-specific, third party

• Major shift: vendor compiler convergence around LLVM

• Slowdown in Moore's Law cadence puts more focus on
massively parallel, vectorized computing: ARM,
NVIDIA/AMD GPU, Intel’s Xeon, KNL, Sapphire Rapids,
AVX-512

• AI/ML + traditional HPC requires powerful reproducible
programming abstractions for computation,
communication and data

• Choosing a programming model is not always a technical
decision

https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/

https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/

55

LLVM: a game changer https://llvm.org/ C. Lattner and V. Adve, "LLVM: a compilation
framework for lifelong program analysis &
transformation," International Symposium on
Code Generation and Optimization, 2004. CGO
2004., 2004, pp. 75-86,
https://doi.org/10.1109/CGO.2004.1281665 .

http://www.aosabook.org/en/llvm.html

LLVM Typed Static Single Assignment (SSA) Intermediate Representation (IR) aka LLVM-
IR: https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

%57 = call %"Array(Int32)"* @"*Array(Int32)@Array(T)::unsafe_build:Array(Int32)"(i32 610, i32 2), !dbg !89

https://llvm.org/
https://doi.org/10.1109/CGO.2004.1281665
http://www.aosabook.org/en/llvm.html
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

66

LLVM: Vendor and programming model adoption

Intel

ARM

NVIDIA

Apple

AMD

https://csmd.ornl.gov/project/clacc

https://openmp.llvm.org

LLVM Commits

https://www.ornl.gov/project
/proteas-tune

https://www.intel.com/content/www/us/en/developer/articles/technical/adoption-of-llvm-complete-icx.html
https://www.arm.com/company/news/2014/04/arm-compiler-builds-on-open-source-llvm-technology
https://blog.llvm.org/2011/12/nvidia-cuda-41-compiler-now-built-on.html
https://developer.apple.com/swift/
https://www.amd.com/en/press-releases/2020-06-22-amd-epyc-processor-adoption-expands-new-supercomputing-and-high
https://csmd.ornl.gov/project/clacc
https://openmp.llvm.org/
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-Record-Growth-2021
https://www.ornl.gov/project/proteas-tune

77

Rethink how we do Computing

• Programming productivity is always a challenge
• Barrier to entry from idea to portable performance
• AI/ML+HPC is a multidisciplinary co-design challenge
• How to leverage ECP legacy?

“Can a machine translate a
sufficiently rich mathematical
language into a sufficiently
economical program at a
sufficiently low cost to make the
whole affair feasible?”-----------------
---------- Backus on Fortran (1980)

• Scientific programming is HARD (specially on our Leadership
Computing Facilities, LCFs)

• Software is our “specialized science equipment” for science
• There is still a lot of plumbing to be done

Key question: “What novel approaches to software design and implementation can be developed to provide
performance portability for applications across radically diverse computing architectures?” from Reimagining
Codesign for Advanced Scientific Computing: Unlocking Transformational Opportunities for Future Computing Systems for Science. DOE
Report https://doi.org/10.2172/1822198

https://doi.org/10.2172/1822198

88

Julia's value proposition for HPC
• Designed for “scientific computing” (Fortran-like) and “data science”

(Python-like) with performant kernel code via LLVM compilation
• Lightweight interoperability with existing Fortran and C libraries
• Julia is a unifying workflow language with a coordinated ecosystem

Slow

Fast

HardEasy

https://juliadatascience.io/

https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-
julia-programming-language-for-free/https://developer.nvidia.com/blog/gpu-

computing-julia-programming-language/

“Julia does not replace Python, but the costly workflow process
around Fortran+Python+X, C+X, Python+X or Fortran+X (e.g.
GPUs)”

where X = { conda, pip, pybind11, cython, Python, C, Fortran, C++,
OpenMP, OpenACC, CUDA, HIP, CMake, numpy, scipy, matplotlib,
Jupyter, …}

LLVM
Rich data science
ecosystem

Pkg.jl

https://juliadatascience.io/
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/

99
9

Julia Brief Walkthrough

q History: started at MIT in the early 2010s (predates
Python Numba)
https://julialang.org/blog/2022/02/10years/

q Julia Computing is a major contributor:
https://juliacomputing.com/case-studies

q First stable release v1.0 in 2018, v1.8 as of 2022
https://julialang.org/

q Open-source GitHub-hosted packages and
ecosystem with MIT permissive license:
https://github.com/JuliaLang/julia

q Community: annual JuliaCon conference (next
week): https://juliacon.org/2022/
https://live.juliacon.org/agenda/2022-07-19

https://julialang.org/blog/2022/02/10years/
https://juliacomputing.com/case-studies
https://julialang.org/
https://github.com/JuliaLang/julia
https://juliacon.org/2022/
https://live.juliacon.org/agenda/2022-07-19

1010
10

Julia Brief Walkthrough

q Reproducibility is in the core of
the language:

- Interactive: Jupyter, Pluto.jl
- Packaging Pkg.jl
- Environment Project.toml
- Testing Test.jl

q Just-in-time or Ahead-of-time
compilation with
PackageCompiler.jl

q Powerful metaprogramming for
code instrumentation: @profile,
@time, @testset, @test,
@code_llvm, @code_native,
@inbounds,

q Interoperability is key: @ccall,
@cxx, PyCall, CxxWrap.jl

https://github.com/ornl-training/julia-basics/tree/main/notebooks/MPI-Heat-Transfer-2D

https://github.com/fonsp/Pluto.jl
https://github.com/JuliaLang/Pkg.jl
https://pkgdocs.julialang.org/v1/toml-files/
https://docs.julialang.org/en/v1/stdlib/Test/
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/ornl-training/julia-basics/tree/main/notebooks/MPI-Heat-Transfer-2D

1111
11

Fortran C C++ Python Julia

Package manager fpm, Too
many

Too many Too many 3rd party: pip,
conda

Pkg.jl

Environment
Reproducibility

? ? ? 3rd party:
pyproject.toml

Project.toml

Metaprogramming fpp macros # Templates,
macros #

decorators @ macros @

Memory
management

Manual Manual RAII,
Manual

Garbage
Collected

Garbage
Collected

Performance Compiled Compiled Compiled 3rd party: numba
(LLVM), numpy,
pybind11,
Cython

JIT and/or AOT
compiled:
PackageCompile
r.jl

Testing 3rd party 3rd party 3rd party 3rd party: pytest,
unittest,

@testset

TIOBE index (Sep
2022)

15 (17) 2 4 1 21 (27)

1212

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

12

1313

CCSD efforts

JULIA FOR HPC
JuliaCon 2022 Minisymposium

• Projects:
– ECP PROTEAS-TUNE: research performance on

Exascale system of different programming
models including Python Numba and Julia (W
Godoy, J Vetter). SRP-HPC mentor

– ECP Proxy Apps: evaluating Julia as a proxy
to understand parallel I/O characteristics (W
Godoy, P Fackler, G Watson) RIOPA.jl
presented at JuliaCon 2022

• External Engagements with Julia HPC
– Monthly meetings with stakeholders
– JuliaCon 2022 HPC minisymposium
– Julia HPC Position paper in the works
– ECP BoF Session on Rapid Prototyping for HPC

using Julia, Python Numba, Flang
– SC22 BoF “Julia for HPC”

• Internal Engagements
– Tutorials at ORNL Software and Data Expo
– Julia Workshop for ORNL Science

https://github.com/ORNL/RIOPA.jl
https://live.juliacon.org/talk/LUWYRJ
https://www.exascaleproject.org/event/ecp-community-bof-days-2022/
https://sc22.supercomputing.org/presentation/?id=bof136&sess=sess309
https://ornl.github.io/events/jufos2022/

1414

Community Efforts in HPC
• Leverage HPC “backends”:

• AMDGPU.jl
• CUDA.jl
• KernelAbstractions.jl
• MPI.jl
• Threads (part of Base)
• ADIOS2 , HDF5

• Monthly HPC Call (Valentin
Churavy, MIT)

• Porting miniWeather App to Julia
(Youngsung Kim, Hyun Kang, and
Sarat Sreepathi, CSED)

• https://ptsolvers.github.io/GPU4GE
O/software/

• https://arxiv.org/abs/2207.03711

14

https://github.com/omlins/julia-gpu-course

https://enccs.github.io/Julia-for-HPC

https://docs.dftk.org/stable

Top15 most popular packages

ECP ExaSDG on Summit

https://juliaastro.github.io/dev
https://github.com/JuliaParallel

https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/CUDA.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://github.com/JuliaParallel/MPI.jl
https://docs.julialang.org/en/v1/manual/multi-threading/
https://github.com/eschnett/ADIOS2.jl
https://github.com/JuliaIO/HDF5.jl
https://calendar.google.com/calendar/event?eid=anJmM3F1dWU2NXRmNGNxcm5jdXVhZzFlM3ZfMjAyMjA5MjdUMTgwMDAwWiBqdWxpYWxhbmcub3JnX2tvbWF1YXFldDE0ZW9nOW9pdjNwNm83cG1nQGc&ctz=America/New_York
https://docs.google.com/presentation/d/1TGEC5v3lv-gZZvSX_21qlpLifbeJhbAKUfLKbbHx6dM/edit?usp=sharing
https://ptsolvers.github.io/GPU4GEO/software/
https://arxiv.org/abs/2207.03711
https://github.com/omlins/julia-gpu-course
https://enccs.github.io/Julia-for-HPC
https://docs.dftk.org/stable/
https://forem.julialang.org/nassarhuda/pagerank-on-the-julia-package-dependency-graph-2gbo
https://sinews.siam.org/Details-Page/rapid-prototyping-with-julia-from-mathematics-to-fast-code
https://juliaastro.github.io/dev
https://github.com/JuliaParallel

1515

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

15

1616

Wombat (ARM)
NVIDIA A100 GPU Crusher (AMD)

MIX250X

Performance results on GPU
Results for Matrix Multiplication

https://github.com/luraess/ROCm-MPI
https://github.com/williamfgc/simple-gemm/tree/main/scripts/julia

https://github.com/luraess/ROCm-MPI
https://github.com/williamfgc/simple-gemm/tree/main/scripts/julia

1717

Interactive computing on JupyterHub with Julia

(v1.6) pkg> add IJulia
... (Or install IJulia any other way).
julia> using IJulia
julia> installkernel("Julia (16 threads)", env=Dict("LD_LIBRARY_PATH" => "",
"JULIA_NUM_THREADS"=>"16"))

…or use Pluto.jl on a terminal

1818

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

18

1919

Where to get started?

• Pick a gentle tutorial: https://techytok.com/from-zero-to-julia/

• https://github.com/ornl-training/julia-basics (training by WF Godoy & Philip
Fackler)

• Use VS Code as the official IDE + debugger (not Juno)

• JuliaCon talks are available on YouTube

• https://discourse.julialang.org/ Stackoverflow might be outdated,
https://julialang.slack.com/

• Julia docs and standard library: https://docs.julialang.org/en/v1/

• Learn: Project.toml, Testing.jl @testset @test, Pluto.jl , CUDA.jl/AMDGPU.jl ,
LinearAlgebra.jl , Makie.jl , Plots.jl and Flux.jl (AI/ML), how to build a sysimage

• Pick problems you care about! Let us know if you’re interested in a hackathon.

• Patience and community reliance: learning a language is a big investment.

19
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-
language.html

https://techytok.com/from-zero-to-julia/
https://github.com/ornl-training/julia-basics
https://discourse.julialang.org/
https://julialang.slack.com/
https://docs.julialang.org/en/v1/
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html

2020

Contents

• Julia’s value proposition for HPC: LLVM + Coordinated Ecosystem

• Community Efforts in HPC

• Running on OLCF System, preliminary results, opportunities

• Resources: where to get started?

• Final thoughts and acknowledgments

20

2121

• Results from registered participants at ORNL JuFOS workshop: https://ornl.github.io/events/jufos2022/

Final Thoughts

https://ornl.github.io/events/jufos2022/

2222

• Can Julia (as a LLVM DSL for science) help scientists invest more time in science?

• Can Julia help bridging social barriers between AI, data science and HPC?

• Should DOE invest more in a DSL for science, as it did with Fortran, but for our needs in 2022?

• Can performance gaps: JIT, garbage collection, “time-to-first-plot” be leveraged?

• What’s the language and community roadmap, locally and externally?

• What’s the ROI for ORNL scientists adopting Julia?

• Personal reasons:

• Julia is Fortran for arrays and math J with a rich Standard Library: https://docs.julialang.org/en/v1/
• LLVM is here to stay for performance. Threads, GPU….fast!
• No object-oriented, no complex C++ templates, no “dependency hell”
• I dedicate more time to write tests than figuring out language syntax and environment related bugs
• Pluto.jl: no messing with conda environments or kernels for Jupyter
• Software is more “to the point” as expected from a specialized piece of equipment
• People: community is really active, helpful, and enthusiastic

Final Thoughts

https://docs.julialang.org/en/v1/

2323

Thanks to the
audience!

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department
of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a
capable exascale ecosystem, including software, applications, and hardware technology, to support the
nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Thanks to Ross Miller for enabling Julia on Wombat, thanks to Youngsung Kim, Hyun Kang, and Sarat Sreepathi from
CSED for sharing their Julia experiences. The Julia for HPC community.

Suzanne Parete-Koon and Michael Sandoval for the invitation.

JuFOS organizers:
- William F Godoy (p)
- Pedro Valero-Lara (p)
- Philip Fackler (p)
- Greg Watson
- Jeff Vetter (p)
- Theresa Ahearn
- Donna Wilkerson

Acknowledgements

JuFOS Presenters:
- Youngsung Kim
- Ada Sedova
- Gavin Wiggins
- Jean-Luc Fattebert
- Elise Dettling
- Alexia Arthur
- Singanallur Venkatakrishnan
- Christian Trefftz
- John Gounley

JuFOS Sponsors:
The Exascale Computing Project,
PROTEAS-TUNE, Proxy App and SRP-HPC sub-
projects.

The ASCR Bluestone Project

https://www.exascaleproject.org/
https://www.ornl.gov/project/proteas-tune
https://proxyapps.exascaleproject.org/
https://shinstitute.org/srp-hpc/
https://csmd.ornl.gov/Bluestone

